Vai al contenuto

simonepietro

Utente Registrato
  • Numero contenuti pubblicati

    8295
  • Iscritto il

  • Ultima visita

Tutti i contenuti di simonepietro

  1. troppi utenti, troppi messaggi.
  2. simonepietro

    alfa , prototipo sbarro

    al momento mi pare che nessuno ne abbia parlato, quindi ecco una foto di questo prototipo che ricorda la mitica 33 . un alfa a tutti gli effetti ,pure all'interno del cofano motore posteriore http://img163.imageshack.us/img163/4198/alfasbarro3bd.png
  3. su quello hai ragione. ma il problema può essere risolto dalla casa stessa,basta diffondere le immagini il giorno stabilito ,non capisco perchè devono essere fornite in anticipo.
  4. insomma. esisteva un signor 2000 turbo da 225 cv, però giustamente per differenziare fu destinato a fiat e lancia. comunque concorderai che il nuovo renault 2000 è notevole.
  5. che il 2,2... su cui sta lavorando, anche x rispondere al nostro simonepietro che chiede perchè renault ha un 2L da quasi 200cv e noi no - se devi muovere una clio puoi anche spostare i segmenti dei pistoni e tarare le cammes da sparare a 7500g/m, con la coppia lassù sempre + in alto grappa bocchino sigillo nero... Guarda caso su modelli tipo laguna un motore così non ci è mai salito... Avrebbe senso su 147, questo si.... ma a quanto pare i pratola serra che tanto amate rispetto a questi "schifosi gm con carattere da mercedes" non offrivano questa possibilità
  6. clamorose furono le foto del telaio nudo della 145 e brava, oppure gli interni della thesis carpiti mesi prima del lancio. mi ricordo che auto affermò che si trattava di un fotomontaggio di 4r asserendo che erano degli interni di una serie 5 modificati al computer e poi abbiamo visto che realmente erano quelli.
  7. quando non scendi a patti non hai la controparte da rispettare, esistono molti modi per trovare le foto di un prototipo oppure di un nuovo modello. 4r negli anni 70-80-90 aveva un free lance che ha rischiato più volte le ossa e il fondo schiena per carpire foto, oppure erano gli stessi lettori che in cambio di un abbonamento annuale giravano con la macchina fotografica sempre pronta.
  8. se si informa in maniera libera e indipendente non si può scendere a patti.
  9. ad esempio le differenze tra il 2.2 ecotec e il 2.2 ecotec dgi sono minime,a parte il rapporto di compressione, abbiamo i pistoni che per il dgi pesano 320g contro i 272g dell'indiretto, il piston pin è il medesimo 20 mm, il diametro valvole idem 35,1 /30,1mm, 'idem il valve lift 10.04/10.04, valve openig e/i 235 /240 gradi idem per tutti e due ma varia la fase dell'aspirazione e scarico 103/116 contro 107/120 del dgi.
  10. foese mi sono spiegato male. il 2.2 jts usa come base il 2.200 ecotec lanciato prima dela join -venture ma è stato modificato su specifiche alfa probabilmente adottanto le additional feature (dispositivi addizionali)previste fin dal progetto per gli ecotecII, oltre chiaramente al particolare funzionamento dell'iniezione diretta che è esclusiva alfa.vi faccio un esempio concreto e semplice . Avete presente il 2000 ecotec turbo SIDI (denominazione u.s.a per l'iniezione diretta) che in europa verrà usato per l'opel gt? esso è realizzato con componenti del 2000 ecotec supercharger(compressore) da 200 cv e del 2400 ecotec vvt(doppi variatori di fase) da 177 cv e del 2.2 ecotec dgi (iniezione diretta stechiometrica ) secondo terminologia europea .Da gm parlando del 2.0 turbo sidi:( It was developed with the global resources of GM Powertrain in the United States and Europe , drawing on expertise from the naturally aspirated Ecotec 2.2-liter direct injection engine (dgi)used in some European applications and the 2.0-liter supercharged engines already in production. .... .....this is architecture is shared with the 2.4-liter Ecotec engine that debuted in the Pontiac Solstice roadster. ....). Quindi tutto era previsto in fase di progetto per realizzare nel corso degli anni dei propulsori da 1800-2400cc e con potenze varianti da 280-300cv a seconda dell'adozione di compressore, turbo, doppi variatori di fase, iniezione indiretta oppure diretta e partendo dal motore base in cilindrata 2.200 cc che sono nati gli altri .Quindi ho il sospetto ma non la certezza che con i jts hanno operato in maniera simile su richiesta del gruppo fiat
  11. se anche tali componenti sono uguali in che cosa differiscono? l'angolo tra le valvole ti ricordo che non è più 46 gradi, l'iniezione diretta stechiometrica(sidi-dgi) è patrimonio pure degli ecotec anche se non a getto multiplo, i variatori hanno il medesimo range di funzionamento.
  12. El motor es un 2,0 l atmosférico que llega a 197 CV de potencia (145 kW) porque puede girar muy rápidamente. Da esa cantidad de potencia a 7.250 rpm y tiene el límite de régimen en 7.500 rpm. El par máximo es 215 Nm, una valor alto para su cilindrada (la presión media efectiva es 13,5 bar). Da el par máximo a 5.550 rpm; entre 3.000 y 7.000 aproximadamente da más de 200 Nm de par; es decir, se trata de un motor elástico para sus características. tutto questo per la clio III RS e noi?
  13. il 2.2 jts ha in pratica il medesimo diametro valvole scarico e aspirazione del 2.2 ecotec -2.2 ecotec dgi.
  14. 4r continua ad affermare che è vuoto ai bassi regimi. impressioni di guida 159 2.4 sportwagon
  15. ho detto ciò perchè ho letto la notizia da qualche parte, poi ci sono alcune fatti che mi fanno pensare, la catena di distribuzione e il fatto che la GM non abbia acquisito la licenza come per i 1.9 mjet. comunque possono essere errate le mie notizie. mi pongo e vi pongo una domanda il telaio della futura corsa è fornito all'opel dal gruppo fiat?
  16. purtroppo è molto difficile stabilire le origini di questi motori.Quello che è certo , su questo penso che saremo tutti d'accordo ,è questo. il 1.3 mjet è di proprietà e progettazione comune Gm-Fiat ( forse pure lo stabilimento di produzione) i cambi della serie M idem in quanto per le auto sia di Gm-fiat vengono prodotti in austria(le vectra-signum sono state le prime ad usarli) ma per i veicoli commerciali da quest'anno la produzione è in italia, il 19 mjet in tutte le sue declinazioni sono FIAT perchè la Gm ha acquistato la licenza per produrli a kaiserlauten e la fiat si è impegnata a continuare lo sviluppo pure per il colosso americano , i 4 cilindri tutti di allumino(ecotec II) prima in cilindrata 2.200 e poi in altre cilindrate è una famiglia Gm in quanto lanciati nel 2000.Per il resto rimane un ragionevole dubbio.
  17. perchè ora mancano i clienti della 156 1.6-18 twin spark. quando lo dissì a suo tempo che la 159 avrebbe avuto problemi a causa delle cilindrate , il prezzo, i costi vari di gestione , con i vecchi clienti della 156 a benzina il ruminante si trasformò in in predatore e tentò di insidiarmi la giugulare
  18. l'egr sui benzina è da alcuni anni che è presente sugli ecotec a cinghia e basamento in ghisa usati dall'opel-vauxhall.
  19. si, ma non si riesce a capire se effettivamente il gruppo fiat ci ha messo le mani. Anche in articoli di stampa molto dettagliati e tecnici , come quelo che ho trasformato in documento di testo da un p.d.f ,non viene mai detto quale contributo la fiat abbia dato.
  20. e poi e preso pari pari dalla produzione gm....bleah!!! -------------------------------------------------------------------------- deriva direttamente dal 1.6 twin port e rispetto al 1.8 gen 2 ne riprende buona parte delle misure interne tanto che le modifiche paiono minime , alleggerimento pistoni,(220 g contro 230g) aumento del piston pin(18mm a 19mm) aumento alzata valvole, nuovi profili degli alberi a camme e alleggerimento basamento, il tutto pesa 118 kg contro i 121 kg del vecchio , ma sopratutto la parte innovativa è il doppio variatore di fase dcvcp. Intervento del gruppo fiat? Difficile stabilirlo dato che anche in documenti dettagliati non viene citata: 1 Introduction The new 1.8 l engine is based on the 1.6 l Twinport engine presented by Opel in 2003, that offers an excellent cost-benefit ratio to customers through its innovative high exhaust gas recirculation (EGR) concept [1]. With the new 1.8 l engine variant, this customer advantage was expanded to include an improved power characteristic. Thus excellent power performances combined with reduced fuel consumption were the top priorities of the product development program. With a power output of 57 kW/l, the engine occupies a top position in this displacement segment. Furthermore, it was possible to offer 90 % of the maximum torque in a broad range of 2200-6200 rpm. The specific fuel consumption at the standard 2000 rpm/2 bar was reduced to 364 g/kWh. The development targets were mainly reached by optimizing the charge cycle using of two continuously variable cam phasers (DCVCP), a new design of the combustion system, the cam profiles and the complete intake and exhaust system. The modular system of the engine family permitted the adaptation of the cam phasers without affecting the basic structure of the engine. The main dimensions of the 1.8 l engine were maintained from the previous generation and thus all variants of this engine family are produced on a modified manufacturing system in the existing engine plant, Table 1. In the future, the engine will be offered in many applications of Opel. In less than 30 months, from the first concept engine to start of production, the engine concept could be realized and the development targets could be safely reached by using state-of-the-art simulation, test rig and rapid prototyping technology. By Gunnar Böhler, Uwe Dieter Grebe, Torsten Löhnert, Manfred Pöpperl and Klaus Steffens Der neue 1,8-l-Vierzylinder-Ottomotor für Opel-Automobile You will find the figures mentioned in this article in the German issue on page 242. The New 1.8 l Four-Cylinder Spark Ignition Engine for Opel Automobiles 2 Development Targets The new 1.8 l engine was improved in all relevant criteria compared to the previous model. The most important development targets have been summarized as follows: increase of the brake mean effective pressure in the entire speed range fuel consumption reduction in the MVEG cycle by 4 % fuel consumption reduction in customer use more than 4 % emission limits according to Euro 4, potential for Euro 5 total engine weight less than 120kg (DIN 70020) maintaining the main geometric dimensions low noise emissions running smoothness potential for further development. 3 Concept Definition For the gasoline engines from Opel, the applicable technology is carefully selected based upon the displacement and the vehicle segment, Figure 1. While the reduction of the fuel consumption was clearly the top development priority for the 1.6 l Twinport engine, the optimization of the full-load behaviour was added as another development focus for the new 1.8 l engine. The largest potential solutions to fulfil these complex requirements are through the use of the DCVCP concept and/or the gasoline direct injection. Due to the more favourable cost-benefit ratio, the DCVCP concept was selected for this price-sensitive market segment. 4 Design The design concept of the new 1.8 l engine, Figure 2, is based on the 1.6 l Twinport engine. New subsystems as cam phasers, an oil-water heat exchanger, piston spray nozzles, an intake manifold with variable runner length, a new exhaust manifold as well as a standardized oil pan module were integrated. The base engine was adjusted to higher load. Within the virtual development process, all components were optimized to the required package, the structural strength, the vibration behaviour and the thermal behaviour. The layout of the subsystems and the entire engine system were executed before the prototype phase based on a complex calculation of the charge cycle and a detailed flow simulation. The number of prototypes and development phases were clearly reduced through the use of these tools. 4.1 Cylinder Block The cylinder block is based on the proven hollow-frame concept of Generation 3. On the exhaust side, the oil cooler was installed, in the area of the main oil gallery the piston spray nozzles and in the front area the direct VCP oil supply. In connection with the block development, in spite of the increased loads, the weight was reduced by 20 % compared to the 1.8 l engine of the second generation, COVER STORY 1.8 l Four-Cylinder Spark Ignition Engine Engine Type 1,8 l 4V 1,8 l 4V Generation 2 Generation 3 Displacement cm3 1796 Bore distance mm 86 Bore mm 80.5 Stroke mm 88.2 Stroke-bore ratio 1,1 Conrod length mm 129,75 Conrod mass g 440 421 Stroke / conrod ratio 0,314 Crankshaft bearing – diameter/width mm 43 / 17 Main bearing – diam/width mm 55 / 19 Piston pin diameter mm 18 19 Piston mass g 230 220 Inlet valve diameter mm 31,2 Exhaust valve diameter mm 27,5 Valve stroke, inlet / exhaust mm/mm 8,5 / 8 9,0 / 8,5 Cam phasing inlet / exhaust °CA fixed 60/45 Compression ratio 10,5 Rated torque at engine speed Nm 165 -170* 175 min-1 3800/4600* 3800 Rated power at engine speed kW 90-92* 103 min-1 6000 6300 Engine management Siemens Siemens Simtec 71 Simtec 75 Fuel quality RON 91/ 95 / 98 Exhaust gas aftertreatment Close-coupled three-way catalyst Emission standards EU IV Engine mass (DIN 70020) kg 121 118 * depending upon the vehicle application 1 Introduction Table1: Technical data of the 1.8 l engines 4 Design Figure 2: Total engine view 4 and at the same time the stiffness of the engine- and-transmission unit was optimized. The grey cast iron block, at only 27 kg including the bearing cap, will form the basis of all future high-performance variants of the Family 1 engine. 4.2 Crankshaft Drive When designing the cranktrain components, the focus was set on increasing the strength. These requirements were met by a new crankshaft design, a modified steel conrod with floating piston pin bearing and a new piston design. In spite of these stiffening measures, the oscillating masses were maintained. Piston cooling compensates the high temperature profile that is the result of the increased engine performance and the geometry of the new lightweight piston. Regarding the cast crankshaft, a weight saving of 6 % was reached, while the very good bending qualities and the torsional stiffness of the second generation are maintained. The degree of balancing of the rotating mass was improved by 60 %. For the new 1.8 l engine, a new designed crankshaft sensor system is used for the first time. The anisotropic magnetoresistive sensor (AMR) is integrated into a plastic carrier and as a module it is pressed into the cylinder block together with the crankshaft seal made of PTFE. The corresponding magnetized sensor disk is mounted between the crankshaft and the flywheel. The entire weight saving concerning the cranktrain is 0.8 kg while maintaining the mass moment of inertia. 4.3 Cylinder Head When designing the cylinder head, special attention was dedicated to the structural strength and the cooling. The inlet and exhaust port geometry was dimensioned by simulating the charge cycle and the flow. The new front camshaft bearing bridge contains the control valves and the bores for the cam phasers oil supply. In addition, it provides the basis of the thrust bearing. Due to adujusting the cylinder head cover with the integrated oil separator the bearing bridge contour, the sealing efficiency could be improved. 4.4 Valve Train Here, the friction-reducing concept of the mechanical tappets with mass reduced valves and springs was taken over from the 1.6 l of the third generation design. The hollow cast camshafts were adjusted to the oil supply of the phasers and the location of the position sensors. The charge cycle calculation provided the data to optimize the cam profile and the valve lift. 4.5 Cam Drive and Cam Phasing Maintaining the layout of the belt drive and the toothed belt dimensions, the automatic belt tensioner was adjusted to the increased moments of inertia. The toothed belt change interval of 150.000 km was maintained. The new 1.8 l engine is the first in the market using a vane-type cam phaser out of a thin-wall forming process. Low weight, minimum space requirements and a wide phasing authority characterize this concept. The camshafts can be phased at the inlet side by 60°CA and at the exhaust side by 45 °CA, Figure 3. Using de-throttling measures in the oil circuit, additional software functions and an optimized phasing and locking strategy, the camshafts can be adjusted at ambient temperatures up to -30 °C. 4.6 Oil Circuit The large number of vehicle applications required a new design of the oil pan. It was achieved to develop a common die cast design for all applications. Special attention was dedicated to the dynamic behaviour of the oil volume. The precasted oil suction channel in connection with the plastic oil scraper, which also covers the suction point in the oil pan, provides an economic solution as well as an optimum solution from the functional point of view. According to the requirements of the Vehicle Platforms, it is possible to install different sensors. The front-end module including the integrated oil and water pumps as well as the toothed belt protection and the fastening points of the accessories is in principle carried over from the 1.6 l Twinport engine. The flow volume of the oil pump, however, had to be optimized due to the additional oil requirements for piston cooling and cam phaser purposes. To improve the oil pressure behaviour in the cylinder head, pressure control is now performed indirectly. The increased thermal load of the oil required the integration of an oil-water heat exchanger. This new module, consisting of heat exchanger and oil filter, included an additional water by-pass tube. It is part of the engine inherent water circuit. The module was integrated under space saving considerations at the exhaust side of the cylinder block. The weight is only 1.1 kg, Figure 4. This design ensures a maximum intercooling of the oil and a minimum loss of pressure. During the cold-start phase, however, this measure allows a faster heating of the engine oil and an early reduction of the internal engine friction. The cam phasers are supplied with oil through separate bores in the cylinder block and head. The recirculation of the increased amount of oil in the cylinder head is permitted through additional pre-cast oil return channels. 4.7 Water Circuit and Thermal Management The cooling principle of the parallel flowthrough known from Generation 3 was kept. Redesigning the water jackets of cylinder head and block regarding water distribution and fluid dynamics, improved the heat transfer significantly, Figure 5. The additional water supply of the oil cooler, parallel to the water circuit of the engine, was designed by extensive CFD simulations so that a minimum of water is needed to achieve maximum oil cooling. The new thermostat housing is executed as a weight reduced plastic construction. All vehicle-related interfaces of the cooling circuit are identical for all generation 3 engines. By increasing the cooling water temperature in the part-load range, thermal management contributes to a minimization of customer fuel consumption by reducing the frictional mean effective pressure and the wall-heat losses. 4.8 Intake Manifold Module Out of an intensive concept study, a twostep intake manifold with a rotary sleeveswitching device was selected. The lateral position of the throttle valve permits an optimum port formation of the single manifold runners in connection with a reduction of the losses in the fresh air section from the air filter to the intake valve, Figure 6. The cross-section of the runner is constant over the entire length. The manifold length in the power mode is 40 % of the torque mode. In order to minimize the flow resistance at high speeds, a rotary sleeve was used instead of a flap-switching device. This solution guarantees the maximum possible cross-sectional area in the open position. Another advantage of the rotary sleeve design is that a high tightness can be reached in the closed position. 4.9 Exhaust Manifold The four-into-one exhaust manifold was performed as a deep-draw design with a close-coupled catalyst. A reduced exhaust gas backpressure and an optimization of the exhaust emissions were achieved through an even distribution of the exhaust gas when flowing into the catalyst and an even flow of the lambda sensor. 4.10 Engine Management System Corresponding to the new requirements of the camshaft phasing and the thermal COVER STORY 1.8 l Four-Cylinder Spark Ignition Engine management, the Engine Management System was modified in the form of a higher computing power and additional sensors. The layout of the engine-mounted PCB control unit was redesigned in order to make allowance for the different vehicle applications and for future extensions of functions. 5 Strategy Camshaft Phasing 5.1 Internal Residual Gas as a Result of Camshaft Phasing In addition to an improvement of the fullload behaviour, camshaft phasing offers a considerable potential to minimize the fuel consumption by allowing internal exhaust gas recirculation and the associated reduction of the engine’s pumping losses. By a controlled camshaft phasing, the internal residual gas is recirculated in three different ways into the combustion chamber: inlet port recirculation exhaust port recirculation combustion chamber recirculation. Which of the three ways is the optimum depends on the set load point. In Figure 7 the simulation result is represented for the partload point bmep=2 bar, n=2000 rpm [2]. 5.2 Phasing Strategy in the Engine Map Based on the simulation, the subsequent optimization on the engine test stand and in the vehicle, the strategies for the individual map areas were calibrated according to the criteria: fuel consumption, emission, driveability and full-load behaviour, Figure 8. The engine related results are represented in sections 6.2 and 6.3, Part Load and Full Load. 6 Development Results 6.1 Combustion / Thermodynamics The combustion system was designed for the fuel qualities RON 91 to 98, in order to ensure a worldwide use of the powertrain without major modifications. According to a corresponding study, the optimum compression ratio is 10.5: 1. The combustion system was developed with the systems AVL Visioknock and Visioflame regarding the combustion initiation, the course of combustion and the antiknock properties. As an example Figure 9 illustrates the ignition phase, i.e. the flame propagation a short time after the ignition and the local distribution of the knock-event probability during a knocking combustion at full load. Due to the adaption of the charge motion and the cylinder-head cooling, a optimized combustion can be reached that avoids the formation of local areas with a high number of knock events. The even spatial distribution of the knock-event probability with local peaks documents the optimum design of the system from a combustion point of view. The quality of the combustion system is confirmed by the analysis of the 50 %-Mass fraction burned at full load, Figure 10. The influence of the rotary sleeve position of the variable intake manifold onto the charge motion and thus onto the combustion process is demonstrated in the area of the switching point at n = 4200/min. The reduced volumetric efficiency in the power mode is compensated by an almost optimum position of the 50 %-Mass fraction burned. At higher speed the 50 %-Mass fraction burned can, given a high volumetric efficiency, be maintained around the optimum. 6.2 Part Load Due to the application of intake and exhaust cam phasers and the option of another variable by positioning the manifold rotary sleeve in torque or optimum position, the total system became more complex. The system was optimized through a process simulation and corresponding experiments. Parameter variations on the test stand were considerably reduced by a pre-selection of optima from the simula- COVER STORY 1.8 l Four-Cylinder Spark Ignition Engine 7 Vehicle Application Table 2: Technical data of a vehicle from the D-segment Vehicle-Segment D-Segment Vehicle curb weight kg 1300 1320 Acc. to 70/156/EEC Engine 1.8 l Gen.2 1.8 l Gen.3 Transmission 5th speed Transmission ratio 1st / 2nd / 3rd / 4th / 5th speed 3,727 / 2,136 / 1,414 / 1,121 / 0,892 Axle ratio 3.737 Tires 195 / 65 R15 Top speed km/h 205 213 Acceleration 0-100 km/h s 11.2 10.5 Fuel consumption acc. to 99/100/EEC Total l/100km 7.6 7.3 CO2 emission g/km 182 175 tion by means of Design of Experiments and an automatically performed test series. Compared to a system with constant cam timing, a potential fuel saving of up to 5 % is developed in the consumption map with the use of continuously variable times at the intake and exhaust sides. By fine-tuning the parameters, a specific fuel consumption figure of 364 g/kWh was achieved for the representative partload standard point (bmep = 26 bar / 2000 rpm), Figure 11. 6.3 Full Load One of the main development targets was the demonstration of a peak position concerning the specific torque and power values and to ensure the possibility of extension. In the development process, the simulation of the charge cycle essentially contributed to the new design of the charge cycle components and their harmonization with the fully variable cam phasers in the intake and exhaust tracks. By using cam phasers, it was possible to optimize the cam profile for filling at low and medium speed ranges. This measure would lead to a reduced volumetric efficiency at higher engine speeds, but due to the very good dynamic properties of the two-step intake manifold, this consequence is compensated. 6 The geometry of the four-into-one exhaust manifold with close-coupled catalyst was adjusted by detail optimization to the variable charge cycle components at the intake side. Comparing the present engine to the previous one, the volumetric efficiency was increased in the lower and medium speed range by up to 11 % and up to 15 % at maximum speed. Special attention may be dedicated to the almost constant course of volumetric efficiency at high speeds, which demonstrates potential for further power optimization, Figure 10. The maximum torque (175 Nm/3800 rpm) and the maximum power (103 kW/ 6300 rpm) could be increased by 6 or 14 % respectively. Thus, an excellent weight-to-power ratio of 1.14 kg/kW was achieved. The implemented measures for full load optimization ensure a top position among comparable competitor’s engines, Figure 12. 7 Vehicle Application In a direct vehicle comparison, better driving performances and a reduced fuel consumption can be offered to the customer. Table 2 shows an example of a comparison between the 1.8 l engine Generation 2 and 3 in a vehicle of the D-segment. 8 Summary The new 1.8 l engine was reengineered in all relevant areas. The current version sets a standard for power range and customer fuel consumption. At the same time, it offers the potential to meet future demands of the market as well as legal requirements. The lambda-1 concept permits the application of conventional emission treatment methods and the use of several fuels worldwide. The engine perfectly fits the modular concept of the mid-size engine family, which reduces the processing and assembly work accordingly and offers the necessary flexibility in view of future developments.
  21. chissà ,magari le trattative per la fornitura sono in corso e a breve potrebbe arrivare
  22. perlomeno a livello di potenza ci siamo, la cilindrata non è particolarmente elevata. però rimanendo in casa GM invece di usare questo 1.8 della famiglia europea ci potevano fornire il 1.800 cc usato negli states che esiste in tre differenti potenze e coppia. un 1800 cc veramente interessante e sorprendente che mi chiedo se sia veramente un GENERAL MOTORS , sicuramente non è un altro esponente ecotec II in quanto sembra non disponga della catena ,oppure se viene fornito alla GM da un altro costruttore (mi fa pensare alla toyota). Tale propulsore usato sulla pontiac vibe esistte in versione base da 118 cv, intermedia da 128cv e infine la più interessante da 164cv, purtroppo al momento la Gm non fornisce altre notizie: pontiac Vibe GT - 164 hp 1.8L DOHC VVTL-i The Vibe GT engine was built for the serious driver. Fill it up with premium fuel and you’ll get more than 164 horsepower attached to the accelerator. With a high-revving 1.8L engine under the hood and six on the floor, it’ll take you where you want to go in no time flat.
  23. ho dei dubbi , errati o meno,sulla difficoltà di raggiungere le norme euro 4 con l'iniezione diretta dato che già con l'indiretta è , era euro 4 sia con 240cv che 250cv e poi il raggiungimento del risultato sarebbe stato agevolato dai variatori.
×
×
  • Crea Nuovo...

 

Stiamo sperimentando dei banner pubblicitari a minima invasività: fai una prova e poi facci sapere come va!

Per accedere al forum, disabilita l'AdBlock per questo sito e poi clicca su accetta: ci sarai di grande aiuto! Grazie!

Se non sai come si fa, puoi pensarci più avanti, cliccando su "ci penso" per continuare temporaneamente a navigare. Periodicamente ricomparità questo avviso come promemoria.